A Mathematical Introduction to Logic -- Section 2.2 -- Problem 1 Solution

\(\def\tauequ{\mathbin{\vDash\style{display: inline-block; transform: scaleX(-1)}{\vDash}}}\) \(\def\Dashv{\mathbin{\style{display: inline-block; transform: scaleX(-1)}{\vDash}}}\) \(\def\DEF{\sf{D\scriptsize EF}.\quad}\) \(\def\DEFi{\sf{D\scriptsize EF}^*.\quad}\) \(\def\DEFn{\sf{D\scriptsize EF}_*.\quad}\) \(\def\DEFin{\sf{D\scriptsize EF}^*_*.\quad}\) \(\def\llbracket{\unicode{x27E6}}\) \(\def\rrbracket{\unicode{x27E7}}\) \(\def\PROOF{\sf{P\scriptsize ROOF}.\quad}\)

点击这里进入AMIL目录

Problem 1

Show that (a) \(\Gamma;\alpha\vDash\varphi\) iff \(\Gamma\vDash(\alpha\rightarrow\varphi)\); and (b) \(\varphi\tauequ\psi\) iff \(\vDash(\varphi\leftrightarrow\psi)\).

\(\PROOF\)

(a) \[ \begin{array}{lcll} \Gamma;\alpha\vDash\varphi & \Leftrightarrow & \forall\psi\forall{\frak A}\forall{s}(\psi\in\Gamma;\alpha\land\vDash_{\frak A}\psi[s]\rightarrow\vDash_{\frak A}\varphi[s]) & (\text{ definition of }\href{/a55d499#LogicallyImply}{\text{logical imply}}) \\ & \Leftrightarrow & \left\{\begin{array}{l} \forall\psi\forall{\frak A}\forall{s}(\psi\in\Gamma\land\vDash_{\frak A}\psi[s]\land\nvDash_{\frak A}\alpha[s]\rightarrow\vDash_{\frak A}\varphi[s]) \\ \forall{\frak A}\forall{s}(\vDash_{\frak A}\alpha[s]\rightarrow\vDash_{\frak A}\varphi[s]) \end{array} \right. \\ & \Leftrightarrow & \forall\psi\forall{\frak A}\forall{s}(\psi\in\Gamma\land\vDash_{\frak A}\psi[s]\rightarrow(\nvDash_{\frak A}\alpha[s]\lor\vDash_{\frak A}\varphi[s]\lor(\vDash_{\frak A}\alpha[s]\land\vDash_{\frak A}\varphi[s]))) \\ & \Leftrightarrow & \forall\psi\forall{\frak A}\forall{s}(\psi\in\Gamma\land\vDash_{\frak A}\psi[s]\rightarrow\vDash_{\frak A}(\alpha\rightarrow\varphi)[s]) & (\text{ definition of } \href{/a55d499#SatisfyConditionalSymbol}{\vDash_{\frak A}(\alpha\rightarrow\varphi)[s]}) \\ & \Leftrightarrow & \Gamma\vDash(\alpha\rightarrow\varphi) & (\text{ definition of logical imply}) \end{array} \]

(b) \[ \begin{array}{lcll} \varphi\tauequ\psi & \Leftrightarrow & \varphi\vDash\psi\land\psi\vDash\varphi \\ & \Leftrightarrow & \vDash(\varphi\rightarrow\psi)\land\vDash(\psi\rightarrow\varphi) & (\text{according to (a)}) \\ & \Leftrightarrow & \forall{\frak A}\forall{s}(\vDash_{\frak A}(\varphi\rightarrow\psi)[s]\land\vDash_{\frak A}(\psi\rightarrow\varphi)[s]) \\ & \Leftrightarrow & \forall{\frak A}\forall{s}(\vDash_{\frak A}(\varphi\rightarrow\psi\land\psi\rightarrow\varphi)[s]) \\ & \Leftrightarrow & \vDash(\varphi\leftrightarrow\psi) \end{array} \]

点击这里进入AMIL目录